### Warm-up question, Lecture 2

Tuesday, January 12, 2021 2:39 PM

Suppose that the function f = u + iv:  $\mathbb{R}^2 \to \mathbb{R}^2$  has all the first partial derivatives for all points  $z \in B(z_0, r)$ .

What can you say about f?

- 1. f is continuous in  $B(z_0, r)$ , but not always differentiable.
- 2. f is differentiable in  $B(z_0, r)$ .

The functions u and v are differentiable in  $B(z_0,r)$ .

4 f can be discontinuous at some points of  $B(z_0,r)$ .

$$f(z) = \int \frac{xy}{x^{2}+y^{2}} + i0, z \neq 0$$

$$0, z = 0$$



$$\frac{3x}{9n} = \frac{3x}{9n} = \frac{3x}{9x} - \frac{3y}{9x} \Big|_{0} = 0$$

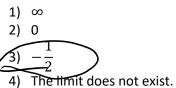
Not continuous ato: 
$$Z = E(1+i)$$
  $f(z) = \frac{E^2}{2E^2} = \frac{1}{2}$ 

# Warm-up question. Lecture 3

Thursday, January 14, 2021 9:22 PM

What is 
$$\lim_{z \to -\frac{1}{2}} \frac{\left\{z^2 - \frac{1}{4}\right\}}{\left\{2z + 1\right\}}$$
?

$$\frac{2^{2} - \frac{1}{4}}{2^{2} + 1} = \frac{\left(2 - \frac{1}{2}\right)\left(2 + \frac{1}{2}\right)}{2\left(2 + \frac{1}{2}\right)}$$





# Warm up question. Lecture 4.

Tuesday, January 19, 2021

11:10 PM

What is the  $\limsup_{n\to\infty} ((-1)^n + \frac{\sin n}{n})$ ?

- 1) 1
- 2) -1
- 3) Does not exist.
- 4) What is limsup?

#### Warm up question. Lecture 5

Friday, January 22, 2021 1:32 PM

For which values of  $\alpha$  the series  $\sum \frac{(-1)^n z^n}{n^{\alpha}}$  converges uniformly in the closed unit disk?

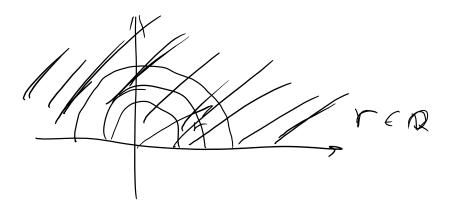
$$\begin{array}{c|c}
1. & \alpha > 0 \\
\hline
2. & \alpha > 1
\end{array}$$

- 3. All values of  $\alpha$ .
- 4. It never converges uniformly in the closed unit disk.

1 7:07 AN

What is the interior of the closure of the set  $\{z \in \mathbf{C}: |z| \in \mathbf{Q}, \operatorname{Arg}(z) > 0\}$ ?

- 1. The complex plane C.
- 2. (A half-plane  $\{\Im z > 0\}$ .)
- 3. Ø.
- 4. I don't know.



## Warm up question. Lecture 7

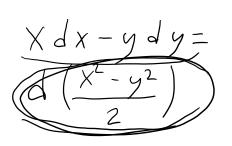
Friday, January 29, 2021 10:23 AM

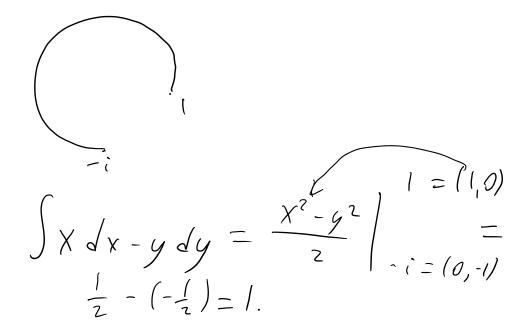
What is the differential of the function  $f(z) = z^2$ ?

1)  $df = 2xdx + \mathbf{i}2ydy$ 2)  $df = (2x + \mathbf{i}2y)dx + (2x + \mathbf{i}2y)dy$ 3)  $df = (2x + \mathbf{i}2y)dx + (-2y + \mathbf{i}2x)dy$ 4) What is "the differential"?

Compute  $\oint_{\gamma} x dx - y dy$ , where  $\gamma$  is a the longer arc of the unit circle joining -i with 1.

- 1) 0
- 2) -1
- 3) 1
- 4) -1/2

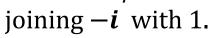




### Warm up question. Lecture 9.

Saturday, February 6, 2021 10:32 AM

Compute  $\oint_{\gamma} \bar{z}^2 dz$  , where  $\gamma$  is a the longer arc of the unit circle

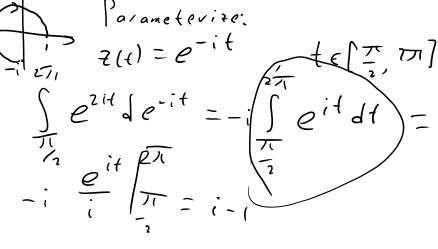


$$\frac{1}{3} - \frac{3}{2} \pi i$$
.

$$\frac{7}{2}^2 = \frac{1}{7^2} = \left(-\frac{1}{7}\right)^2$$

$$\left(-\frac{1}{7}\right)\Big|_{-i}^{1}=i-1$$

$$\int \rho^{2it} \int e^{-it} = -$$

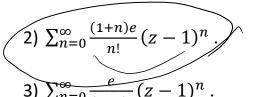


#### Warm up question. Lecture 10.

Thursday, February 11, 2021 1:00 PM

What is the Taylor series of the function  $f(z) = ze^z$  at the point z = 1?

1) 
$$\sum_{n=0}^{\infty} \frac{1}{n!} (z-1)^n$$
.



4) I don't know.

$$W = 7 - 1$$

$$(W + 1) e^{W + 1} = e(w + 1) e^{W} = \frac{w^{2} + 1}{w^{2} + 1}$$

$$e(w + 1) \sum_{n=0}^{\infty} \frac{w^{n}}{n!} = \sum_{n=0}^{\infty} \frac{w^{n} + 1}{n!}$$

$$e(w + 1) \sum_{n=0}^{\infty} \frac{w^{n}}{n!} = \sum_{n=0}^{\infty} \frac{w^{n} + 1}{n!}$$

$$e(w + 1) \sum_{n=0}^{\infty} \frac{w^{n}}{n!} = \sum_{n=0}^{\infty} \frac{w^{n} + 1}{n!}$$

$$e(w + 1) \sum_{n=0}^{\infty} \frac{w^{n}}{n!} = \sum_{n=0}^{\infty} \frac{w^{n} + 1}{n!}$$

$$e(w + 1) \sum_{n=0}^{\infty} \frac{w^{n}}{n!} = \sum_{n=0}^{\infty} \frac{w^{n} + 1}{n!}$$

$$e(w + 1) \sum_{n=0}^{\infty} \frac{w^{n}}{n!} = \sum_{n=0}^{\infty} \frac{w^{n} + 1}{n!}$$